FREEDOM OF INFORMATION SUMMARY

SUPPLEMENTAL ABBREVIATED NEW ANIMAL DRUG APPLICATION

ANADA 200-247

OXYTETRACYCLINE HCL SOLUBLE POWDER-343
oxtetracycline hydrochloride

To add a claim for the skeletal marking of finfish fry and fingerlings

Sponsored by:
Phoenix Scientific, Inc.
1. **GENERAL INFORMATION**

   a. File Number: ANADA 200-247

   b. Sponsor: Phoenix Scientific, Inc.
      3915 South 48th St. Terrace
      St. Joseph, MO 64503
      Drug Labeler Code: 059130

   c. Established Name: Oxytetracycline hydrochloride

   d. Proprietary Name: OXYTETRACYCLINE HCL SOLUBLE POWDER-343

   e. Dosage Form: Soluble powder

   f. How Supplied: 135.5 g (4.78 oz) and 272.2 g (9.6 oz.) foil pouches

   g. How Dispensed: OTC

   h. Amount of Active Ingredients: 272.2 g packet contains 204.8 g oxytetracycline HCl; 135.5 g packet contains 102.4 g oxytetracycline HCl

   i. Route of Administration: Immersion

   j. Species/Class: Finfish/fry and fingerling

   j. Recommended Dosage: 200 to 700 mg oxytetracycline/L of water for 2-6 hrs

   l. Pharmacological Category: Antimicrobial

   m. Indications: For the marking of skeletal tissues in finfish fry and fingerlings as an aid in identification.

   n. Effect of Supplement: To provide a new indication for the marking of skeletal tissues in finfish fry and fingerlings as an aid in identification.
2. **EFFECTIVENESS:**

A combination of data from many different fish species reared in different temperatures and management systems were used to support the determination of effectiveness in all teleost (bony) fish, consistent with the *Guidance for Industry: FDA Approval of Animal Drugs for Minor Uses and for Minor Species* (FDA/CVM January 1999). The data summarized in this section are publicly available data contained in Public Master File 005667 which were compiled under National Research Support Project-7, a national agricultural research program for obtaining clearances for use of new drugs in minor species and for special uses. The range of oxytetracycline concentrations, 200 to 700 mg OTC/L of water, is supported by the studies summarized in this section, as well as the literature references at the end of this section.

**a. Dosage Characterization:**

Reports of successful marking of bony structures of fish, especially the otoliths, have been published for decades. There is a significant body of evidence that tetracyclines stain bony tissues in a wide range of species. The process of marking bony structures with tetracyclines was described in the literature as early as 1962. The literature reflects the widespread use of oxytetracycline by various routes and demonstrates the breadth and number of available publications on marking. This literature provided information to demonstrate the safety and effectiveness of oxytetracycline marking of finfish.

The otolith was selected for evaluation of marking success because otoliths are the first permanent calcified structures present in the earliest life stages of fish and are, effectively, biological internal tags. Once deposited, calcium in the otolith was mobilized little if at all.

Immersion was chosen as the route of administration because immersion marking allows fish to be mass marked with minimal handling. The doses selected were based on the doses found in the published literature.

**b. Substantial Evidence:**

1. **Field Study**

   **Type of Study:** Clinical Field Trial

   **Name and Address of Investigator:** W. Jenkins
   South Carolina Department of Natural Resources
   Charleston, SC

   **General Design of the Study:**

   a. **Purpose of the Study:** To evaluate the effectiveness of using oxytetracycline (OTC) to mark red drum fingerlings for later identification as stocked fish in wild populations.
b. Test Animals: Red drum fingerlings (*Sciaenops ocellatus*)

c. Treatment Groups: This study included only one treatment group, oxytetracycline-treated fish.

d. Dosage Form: Water-soluble oxytetracycline hydrochloride

e. Route of Administration: Immersion (bath)

f. Dosage Used: 500 mg oxytetracycline/L of water for 4 hours

g. Test Duration: 30 days (treatment to examination)

h. Variables: Examination of otoliths to identify marks and mortality associated with OTC immersion marking

Methods: Red drum were harvested from 5 ponds in the fall of 1996 and 4 ponds in the spring of 1997 for immersion treatment. Fish were placed in a holding tank and acclimated to 15 ppt salinity water. OTC was added to the tank to provide a 500 mg/L OTC concentration. Fish were held for 4 hours. Fish were then transferred to a hauling trailer filled with 15 ppt salinity water. Fish were restocked in a pond at the culture facility and held for 7 days. The salinity in the pond was raised to the concentration of the area to be stocked during the 7-day holding period. Fish were harvested and transported to stocking sites for release. A subsample of each group of marked fish was retained for 30 days to confirm mark effectiveness.

Results: Visible marks could be detected on otoliths in all batches of treated fish. Samples of fish from the wild population indicated that up to 40% of stocked age one year fish had OTC otolith marks.

Conclusion: Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otolith is a four-hour immersion at 500 mg/L oxytetracycline hydrochloride.

2. Field Study

Type of Study: Clinical Field Trial

Name and Address of Investigator: M. L. Hendricks
Pennsylvania Fish & Boat Commission
State College, PA

General Design of the Study:

a. Purpose of the Study: To apply unique multiple marks needed to discriminate between groups of fish from different egg source rivers, fish released as fry or fingerlings, and fish released at different sites.

b. Test Animals: American shad fry (*Alosa sapidissima*), 3-15 days old
c. **Treatment Groups:** Six different single and multiple marks were applied. A total of 8,500,000 fry were produced with all except 13,500 stocked in the Susquehanna River and its tributaries, or the Lehigh River. Fry were marked in 1200 L rearing tanks (40 total), each containing up to 500,000 fry.

d. **Dosage Form:** Water-soluble oxytetracycline hydrochloride

e. **Route of Administration:** Immersion (bath)

f. **Dosage Used:** 256 mg oxytetracycline (buffered)/L of water for 4 hours

g. **Variable:** Fry from 6 tanks and raceways were sampled for otolith mark retention.

**Results:** Retention of immersion marks for American shad fry was 100% for all production groups in 1996. Refer to the following table.

**Table 2.1.** Oxytetracycline mark retention for American shad reared in 1996.

<table>
<thead>
<tr>
<th>Tank/Raceway</th>
<th>Mark Applied (day)</th>
<th>Marks Visualized (day)</th>
<th>Number Examined</th>
<th>Number Marked</th>
<th>Number stocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race F1</td>
<td>9,12,15</td>
<td>9,12,15</td>
<td>19</td>
<td>19</td>
<td>171,700</td>
</tr>
<tr>
<td>Race F3</td>
<td>3,9,12,15</td>
<td>3,9,12,15</td>
<td>19</td>
<td>19</td>
<td>277,100</td>
</tr>
<tr>
<td>Race E1</td>
<td>3,6,9</td>
<td>3,6,9</td>
<td>18</td>
<td>18</td>
<td>42,900</td>
</tr>
<tr>
<td>Race F2</td>
<td>3,9,12</td>
<td>3,9,12</td>
<td>19</td>
<td>19</td>
<td>561,100</td>
</tr>
<tr>
<td>Race F4</td>
<td>3,6,9,12</td>
<td>3,6,9,12</td>
<td>19</td>
<td>19</td>
<td>682,500</td>
</tr>
<tr>
<td>Not Sampled</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>5,730,200</td>
</tr>
<tr>
<td>Tank J4*</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>17</td>
<td>Not stocked</td>
</tr>
</tbody>
</table>

*Sampled at 28 days of age.

All fry produced received marks.

**Conclusion:** Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otolith is a four-hour immersion at 256 mg/L oxytetracycline hydrochloride.

3. **Field Study**

**Type of Study:** Clinical Field Trial

**Name and Address of Investigator:** K. D. Cottrell  
Illinois Department of Conservation  
Springfield, Illinois

**General Design of the Investigation:**

a. **Purpose of the Study:** To determine the effectiveness of oxytetracycline HCl in the marking of otoliths of fry and fingerling fish of different species.
b. **Test Animals and Treatment Groups:** Largemouth bass (*Micropterus salmoides*) fingerlings, walleye (*Stizostedion vitreum*) fry and fingerlings, and sauger (*Stizostedion canadense*) fry and fingerlings.

c. **Treatment Groups:** The fish were assigned to either treatment (500 mg/L for 6 hours) or smaller control groups.

| Table 2.2. Number of each fish species treated during 1997. |
|-----------------|----------------|----------------|
| **Species**     | **Treated**    | **Control**    |
| Largemouth bass fingerlings | 25,000 | 300 |
| Walleye fry      | 5,837,400 | 100,000 |
| Walleye fingerlings | 143,306 | 1,000 |
| Sauger fry       | 2,400,000 | 100,000 |
| Sauger fingerlings | 166,934 | 1,000 |

d. **Dosage Form:** Water-soluble oxytetracycline hydrochloride

e. **Route of Administration:** Immersion (bath)

f. **Dosages Used:** 0 and 500 mg oxytetracycline/L of water for 6 hours

g. **Test Duration:** 30 to 45 days (from treatment to sampling)

h. **Variables:** Clinical observations and examination of otoliths to identify marks (50 fish from each treated group, and 50 from each control group).

**Methods:**

Fry – Groups of 100,000 fry were placed in a 500 mg/L concentration of oxytetracycline in 3 gallons of water within a plastic fish hauling bag for six hours. To ascertain mark retention, 100,000 of the marked and control fry were placed into separate rearing ponds. At the end of the rearing period (45 days for walleye and 60 days for sauger), samples of 50 fish per group were collected at harvest and checked for mark effectiveness.

Fingerlings – Fish were immersed in a 500 mg/L concentration of oxytetracycline for six hours. Marked and control fish were retained for 30 days post-treatment and then harvested for examination. Samples of at least 50 fish from each group were checked for mark effectiveness.

**Results:** Results are shown in the following table.
Table 2.3. Results of otolith marking field effectiveness trials in 1997.

<table>
<thead>
<tr>
<th>Species</th>
<th>Treatment</th>
<th>Number Examined</th>
<th>Number Marked</th>
<th>Percent Marked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walleye fry</td>
<td>OTC Immersion</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Walleye fingerlings</td>
<td>OTC Immersion</td>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sauger fingerlings</td>
<td>OTC Immersion</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sauger fry</td>
<td>OTC Immersion</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Largemouth bass fingerlings</td>
<td>OTC Immersion</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conclusion: Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otoliths of walleye fry and fingerlings, sauger fry and fingerlings, and largemouth bass fingerlings is a six-hour immersion in 500 mg/L oxytetracycline hydrochloride.

4. Field Study

Type of Study: Clinical Field Trial

Name and Address of Investigator: D. O. Lucchesi
South Dakota Department of Game, Fish, and Parks
Pierre, South Dakota

General Design of the Study:

a. Purpose of the Study: To determine the effectiveness of oxytetracycline HCl in the marking of otoliths of walleye fry and fingerlings.

b. Test Animals: Walleye (Stizostedion vitreum) fry and fingerlings.

Table 2.4. Fish treated during a field study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walleye fry</td>
<td>12,000,000</td>
</tr>
<tr>
<td>Walleye fingerlings</td>
<td>150,000</td>
</tr>
</tbody>
</table>
c. **Treatment Groups**: Natural rearing ponds were stocked with either 500 mg/L or 700 mg/L marked fry, or 500 mg/L marked fingerlings. Two ponds were stocked with 500 mg/L marked fry and two ponds were stocked with 700 mg/L marked fry. Equal numbers of marked and unmarked fry were stocked into 0.8 ha hatchery ponds to compare survival.

d. **Dosage Form**: Water-soluble oxytetracycline hydrochloride.

e. **Route of Administration**: Immersion (bath).

f. **Dosages Used**: Walleye fry were marked at either 500 mg/L or 700 mg/L. Walleye fingerlings were marked at 500 mg/L. Immersion was for 6 hours.

g. **Test Duration**: 30 days to 3 months (from treatment to sampling).

h. **Variables**: Examination of otoliths to identify marks and mortality associated with OTC immersion marking

**Methods:**

To produce the marking bath, an OTC slurry was mixed in a 20 L plastic bucket and was then buffered to a neutral pH using sodium phosphate (dibasic, \( \text{Na}_2 \text{HPO}_4 \)). Walleye fry were immersed for 6 hours in 683 liter fiberglass raceways containing either 500 or 700 mg OTC/L. Density of fry did not exceed 2,000 fry per liter. Pond-reared fingerlings were marked by immersion for 6 hours in a 500 mg OTC/L water solution in 632 liter fiberglass transfer tanks. Fingerling densities did not exceed 50 fish per liter.

To evaluate marking effectiveness and mark retention, OTC-marked fry and fingerlings were stocked into natural rearing ponds that had complete fish kills the previous winter. These test ponds contained marked individuals from one of three test groups: fry immersed in 500 mg OTC/L or 700 mg OTC/L, or fingerlings immersed in 500 mg/L. Test ponds were electrofished in early fall (approximately 3 months after marking) to recover walleye for evaluation of the mark quality.

To evaluate mortality associated with OTC immersion marking, the 0.8 ha ponds were seined approximately 30-40 days after stocking. A sample of 100 fingerlings per pond was examined for OTC otolith marks.

**Results**: Results are shown in the following table.
These findings suggest that better quality marks are obtained when fish are immersed in a bath containing 700 mg/L OTC. Problems with OTC precipitating out of solution typically occurred at a pH of higher than 8.0. Therefore, the pH of the bath was maintained at 7.0 to 7.6, even when hatchery water pH exceeded that range.

**Conclusion:** Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otolith of walleye fry is a six-hour immersion at 700 mg/L OTC.

**Supporting Literature**

The following published articles were submitted to support the effectiveness of oxytetracycline for the marking of otoliths in bony fish:


2. **TARGET ANIMAL SAFETY:**

The data summarized in this section is publicly available data contained in Public Master File 005667 which were compiled under National Research Support Project-7, a national agricultural research program for obtaining clearances for use of new drugs in minor species and for special used.


1. **Type of Study:** Target animal safety

2. **Name and Address of Investigators:** B.W. Bumguardner and T.L. King
   Texas Parks and Wildlife Department
   Palacios, Texas

3. **General Design of the Study:**

   a. **Purpose of the Study:** The study was designed to identify adverse effects of exposing fish to a geometric sequence of oxytetracycline by immersion.

   b. **Test Animals:** Juvenile striped bass (*Morone saxatilis*), approximately 48 mm total length and 2.2 g.

   c. **Treatment Groups:** Three replicates per concentration were tested with ten fish per replicate. The first set of tests included 6 different OTC concentrations. The second set of tests included 3 higher concentrations.

   d. **Dosage Form:** Water-soluble oxytetracycline hydrochloride

   e. **Route of Administration:** Immersion (bath)

   f. **Dosages Used:** Concentrations of 0, 55.8, 111.6, 223.3, 446.5, and 893 mg/L; second set of tests: 893, 1786, and 3572 mg/L. 6-hour immersion exposure.

   g. **Test Duration:** 26 days (from set up to final observations)

   h. **Variables:** Survival and behavior at 1 hour intervals during the 6-hour treatment and for 6 hours after treatment were observed. Mortality was monitored daily for the next 4 days. Water conditions were also monitored for temperature, salinity, pH, and total hardness.

4. **Methods:**

After a 22-day acclimation period in a recirculating raceway, the fish were transferred to the test chambers. The test chambers were 4.5 liter aquaria containing salt water (enough to make the total volume 2 liters after addition of OTC solution). OTC HCl unbuffered solution was added to provide concentrations of 0, 55.8, 111.6, 223.3, 446.5, and 893 mg/L. Since no deaths were seen, the 893 mg/L concentration was repeated and 1786 and 3572 mg/L concentrations were added. Fish were immersed for 6 hours. Fish were then
placed in a beaker while the aquaria were rinsed. Fish were then placed back into aquaria. Water was exchanged every 24 hrs for 4 days.

5. Results:

a. Water conditions: Water conditions are included in the following table.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pre Treatment</th>
<th>During Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>26°C</td>
<td>26°C</td>
</tr>
<tr>
<td>Salinity</td>
<td>5 ± 1.9%</td>
<td>7%</td>
</tr>
<tr>
<td>pH</td>
<td>8.3</td>
<td>3.25-8.56*</td>
</tr>
<tr>
<td>Total hardness</td>
<td></td>
<td>33.4 mg/L (as CaCO3)</td>
</tr>
</tbody>
</table>

*pH varied depending on OTC concentration

A white precipitate was observed in the higher OTC concentration test chambers.

b. Mean Mortality: Percent mean mortality results are included in the following table.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>During Treatment</th>
<th>After Treatment</th>
<th>Total (and range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>0</td>
<td>6.7</td>
<td>6.7 (0-10)</td>
</tr>
<tr>
<td>55.8 mg/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111.6 mg/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>223.3 mg/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>446.5 mg/L</td>
<td>0</td>
<td>30</td>
<td>30 (10-60)</td>
</tr>
<tr>
<td>893 mg/L</td>
<td>0</td>
<td>81.7</td>
<td>81.7 (60-100)</td>
</tr>
<tr>
<td>1786 mg/L</td>
<td>23.3</td>
<td>73.3</td>
<td>96.7 (90-100)</td>
</tr>
<tr>
<td>3572 mg/L</td>
<td>100</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Stressed behavior (rapid swimming at the water’s surface) was reported in concentrations of OTC 446.5 mg/L and higher.

6. Conclusion: The pH of the immersion solution may have caused or contributed to the death of the fish in the highest dose groups. The mean pH of test aquaria water after addition of OTC solution began to decrease significantly at 893 mg OTC/L. At 1786 mg/L, the pH was more than 1.5 units lower than that of the control group; at 3572 mg/L, the pH was more than 5 units lower than that of the control group.
b. Field Study

1. Type of Study: Clinical Field Trial

2. Name and Address of Investigator: W. Jenkins
   South Carolina Department of Natural Resources
   Charleston, SC

3. General Design of the Study:
   a. Purpose of the Study: This study was primarily designed to demonstrate effectiveness. During the fall of 1996 and spring of 1997, fish were stocked in hatchery ponds following treatment. The ponds were harvested approximately one week later to evaluate post-treatment mortality.
   
   b. Test Animals: Red drum (Scianenops ocellatus) fingerlings.
   
   c. Treatment Group: This study included only one treatment group, oxytetracycline-treated fish.
   
   d. Dosage Form: Water-soluble oxytetracycline hydrochloride
   
   e. Route of Administration: Immersion (bath)
   
   f. Dosages Used: 500 mg oxytetracycline/L for 4 hours
   
   g. Test Duration: Approximately one week (treatment to harvest)
   
   h. Variables: Mortality occurring one week following treatment was recorded.

4. Methods: Red drum fingerlings were placed in a holding tank on a trailer and acclimated to approximately 15 ppt salinity. Adequate OTC was added to provide a 500 mg/L concentration. Fish were held for 4 hours and then transferred to a hauling trailer. Fish were stocked in a pond at the culture facility and held for one week. During that week pond salinity was slowly raised to the same concentration as the area to be stocked (29-30 ppt). Fish were then harvested and transported to stocking sites for release.

5. Results: Results are included in the following table.
Table 3.3. Mean size and survival of red drum fingerlings treated from 9/96-5/97 with OTC at a concentration of 500 mg/L for 4 hours.

<table>
<thead>
<tr>
<th>Treatment Date</th>
<th>Mean Length (mm)</th>
<th>Mean Weight (g)</th>
<th>Number of Fish Treated</th>
<th>Survival (%)</th>
<th>Number Harvested</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/16</td>
<td>39</td>
<td>0.59</td>
<td>37,047</td>
<td>72.2</td>
<td>26,746</td>
</tr>
<tr>
<td>10/15</td>
<td>37</td>
<td>0.67</td>
<td>63,898</td>
<td>43.1</td>
<td>28,061(^a)</td>
</tr>
<tr>
<td>10/16</td>
<td>25</td>
<td>0.21</td>
<td>381,028</td>
<td>66.6</td>
<td>253,637</td>
</tr>
<tr>
<td>10/22</td>
<td>37</td>
<td>0.68</td>
<td>43,332</td>
<td>71.1</td>
<td>30,801</td>
</tr>
<tr>
<td>11/7</td>
<td>13</td>
<td>0.10</td>
<td>265,593</td>
<td>86.4</td>
<td>229,712(^b)</td>
</tr>
<tr>
<td>5/15</td>
<td>33</td>
<td>0.36</td>
<td>65,810</td>
<td>82.8</td>
<td>54,474</td>
</tr>
<tr>
<td>5/22</td>
<td>28</td>
<td>0.25</td>
<td>114,423</td>
<td>80.7</td>
<td>92,395</td>
</tr>
<tr>
<td>5/27</td>
<td>29</td>
<td>0.24</td>
<td>470,611</td>
<td>86.8</td>
<td>408,653</td>
</tr>
<tr>
<td>5/29</td>
<td>34</td>
<td>0.31</td>
<td>143,589</td>
<td>93.9</td>
<td>134,900</td>
</tr>
</tbody>
</table>

\(^a\)This pond had a dense growth of macrophytic algae. Fish got stranded in the algal mat during harvest.

\(^b\)A salinity acclimation error during post-treatment resulted in 20% mortality during harvest and release, therefore only 183,770 fish were released alive.

6. **Conclusion**: Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otolith, a four-hour immersion in 500 mg/L oxytetracycline, is safe to red drum fingerlings.

c. **Field Study**

1. **Type of Study**: Clinical Field Trial

2. **Name and Address of Investigator**: K. D. Cottrell
   Illinois Department of Conservation
   Springfield, Illinois

3. **General Design of the Study**:
   a. **Purpose of the Study**: The studies were primarily designed to demonstrate effectiveness. The studies involved the treatment of many species and large numbers of fish. The studies demonstrate several issues related to target animal safety.

   b. **Test Animals**: Largemouth bass (*Micropterus salmoides*) fingerlings, walleye (*Stizostedion vitreum*) fry and fingerlings, and sauger (*Stizostedion canadense*) fry and fingerlings.
c. **Treatment Groups**: The fish were assigned to either treatment (500 mg/L for 6 hours) or smaller control groups according to the following table.

**Table 3.4.** Treatment groups for a marking study conducted in 1997.

<table>
<thead>
<tr>
<th>Species</th>
<th>Treatment (number)</th>
<th>Control (Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largemouth bass fingerlings</td>
<td>25,000</td>
<td>300</td>
</tr>
<tr>
<td>Walleye fry</td>
<td>5,837,400</td>
<td>100,000</td>
</tr>
<tr>
<td>Walleye fingerlings</td>
<td>143,306</td>
<td>1,000</td>
</tr>
<tr>
<td>Sauger fry</td>
<td>2,400,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Sauger fingerlings</td>
<td>166,934</td>
<td>1,000</td>
</tr>
</tbody>
</table>

d. **Dosage Form**: Water-soluble oxytetracycline hydrochloride

e. **Route of Administration**: Immersion (bath)

f. **Dosages Used**: 0 and 500 mg oxytetracycline/L of water for 6 hours

g. **Test Duration**: 1 day (fish stocked the day of treatment)

h. **Variables**: Mortality and adverse reactions were recorded.

4. **Methods**:

   Fry - Groups of 100,000 fry were placed in a 500 mg/L concentration of oxytetracycline in 3 gallons of water within a plastic fish hauling bag for six hours.

   Fingerlings - Fish were immersed in a 500 mg/L concentration of oxytetracycline for six hours.

5. **Results**: Results are included in the following table.

**Table 3.5.** Mortality and adverse reactions observed in 1997 at Jake Wolf, Little Grassy and LaSalle Hatcheries in Illinois.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number Treated</th>
<th>Mortalities</th>
<th>Adverse Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largemouth bass fingerlings</td>
<td>25,000</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Walleye fry</td>
<td>5,824,080</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Walleye fingerlings</td>
<td>138,626</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Sauger fry</td>
<td>22,000,000</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Sauger fingerlings</td>
<td>166,934</td>
<td>0</td>
<td>None</td>
</tr>
</tbody>
</table>

No adverse reactions or mortality occurred in control groups in any of the species treated.
6. **Conclusion**: Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otolith, a six-hour immersion at 500 mg/L, is safe to fry and fingerlings.

d. **Field Study**

1. **Type of Study**: Clinical Field Trial

2. **Name and Address of Investigator**: R. T. Colesante  
   New York State Department of Environmental Conservation  
   Constantia, NY

3. **General Design of the Study**:
   a. **Purpose of the Study**: Evaluate the survival of walleye fry after oxytetracycline (OTC) marking and stocking in earthen ponds.
   b. **Test Animals**: Walleye (*Stizostedion vitreum*) fry
   c. **Treatment Groups**: Oxytetracycline-treated and untreated fry
   d. **Dosage Form**: Water-soluble oxytetracycline hydrochloride
   e. **Route of Administration**: Immersion (bath)
   f. **Dosages Used**: 0 and 500 mg oxytetracycline/L of water for 6 hours
   g. **Test Duration**: 45-55 days (treatment to harvest)
   h. **Variable**: Survival was recorded.

4. **Methods**: In 1994, fry were immersed in a 500 mg/L oxytetracycline static bath for 6 hours or left untreated. Six ponds were stocked with marked fry and an additional six ponds were stocked with unmarked fry. Each pond was stocked with 20,000 fry. Ponds were harvested after 45-55 days.

5. **Results**: Survival results from each pond are shown in the following table.
Table 3.6. Survival results following otolith marking with oxytetracycline.

<table>
<thead>
<tr>
<th>Pond No.</th>
<th>Treatment Group</th>
<th>Fry Stocked</th>
<th>Fingerling Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unmarked</td>
</tr>
<tr>
<td>1</td>
<td>OTC</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>OTC</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>OTC</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Control</td>
<td>20,000</td>
<td>5,360</td>
</tr>
<tr>
<td>5</td>
<td>Control</td>
<td>20,000</td>
<td>12,964</td>
</tr>
<tr>
<td>6</td>
<td>OTC</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Control</td>
<td>20,000</td>
<td>18,184</td>
</tr>
<tr>
<td>8</td>
<td>OTC</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Control</td>
<td>20,000</td>
<td>12,367</td>
</tr>
<tr>
<td>10</td>
<td>Control</td>
<td>20,000</td>
<td>12,727</td>
</tr>
<tr>
<td>11</td>
<td>Control</td>
<td>20,000</td>
<td>13,457</td>
</tr>
<tr>
<td>12</td>
<td>OTC</td>
<td>20,000</td>
<td>-</td>
</tr>
</tbody>
</table>

Mean Survival 62.5 % 74.1 %

6. Conclusion: Based on this study, the recommended dose of oxytetracycline to achieve a fluorescent mark on the otolith, a six-hour immersion at 500 mg/L, is safe to walleye fry.
4. **HUMAN SAFETY:**

- **Toxicity:** An acceptable daily intake (ADI) of 25 micrograms per kilogram of body weight per day has been previously codified for total tetracycline residues (chlortetracycline, oxytetracycline, and tetracycline) (21 CFR 556.500).

- **Residue Depletion Studies:** Residue depletion data for fish marked with oxytetracycline have been summarized in PMF 5667 (67 FR 46527 dated July 15, 2002). The data are from PMF 3265 and the public literature. A discussion on the long inherent withdrawal period which occurs between treatment of the fish and possible consumption by humans also appears in PMF 5667. The data in PMF 5667 and the public literature, and the long inherent withdrawal period support the human food safety of the use of oxytetracycline to mark finfish fry and fingerlings.

- **Tolerance and Withdrawal Time:** A tolerance of 2 ppm in muscle tissue as the sum of tetracycline residues has been previously codified for the edible tissue of finfish (21 CFR 556.500). A withdrawal time beyond the grow-out period is not needed.

- **Microbial Food Safety:** The potential human health impact of the microbial effects associated with the use of oxytetracycline HCl to mark skeletal tissue, most often the otoliths, of finfish fry or fingerlings for subsequent identification, was assessed pursuant to CVM’s Guidance for Industry #78 titled *Consideration of the Human Health Impact of the Microbial Effects of Antimicrobial New Animal Drugs Intended for Use in Food-Producing Animals*. The Agency has determined that use of oxytetracycline HCl as described in this application will not significantly impact the rate and extent of development of antimicrobial drug resistant enteric bacteria formed in the intestinal tract of treated fish following exposure to oxytetracycline HCl.

- **Regulatory Method for Residues:** The analytical method for detection of residues of oxytetracycline is a microbiological assay using *Bacillus cereus* var. *mycoides*. This method may be found in “Antibiotic Residues in Milk, Dairy Products, and Animal Tissues: Methods, Reports, and Protocols” (revised October 1968, reprinted December 1974), National Center for Antibiotic and Insulin Analysis, FDA, Washington, DC 20204). The method is on file at the Center for Veterinary Medicine, 7500 Standish Pl., Rockville, MD 20855.
5. **AGENCY CONCLUSIONS:**

The data submitted in support of this ANADA satisfy the requirements of section 512 of the Federal Food, Drug, and Cosmetic Act and 21 CFR Part 514 of the implementing regulations. The data demonstrate that OXYTETRACYCLINE HCL SOLUBLE POWDER-343, when administered by immersion at concentrations of 200 to 700 mg oxytetracycline hydrochloride/liter of water for 2 to 6 hours, is safe and effective to mark skeletal tissues of finfish fry and fingerlings as an aid in identification.

OXYTETRACYCLINE HCL SOLUBLE POWDER-343 for use in food-producing animals is currently marketed as an over-the-counter product. Adequate directions for safe and effective use by the layperson have been provided. Therefore, the Agency has concluded that this product may retain over-the-counter marketing status.

A tolerance of 2 ppm in muscle tissue as the sum of tetracycline residues has been previously codified for the edible tissue of finfish. A withdrawal time beyond the grow-out period is not needed. An ADI of 25 micrograms per kilogram of body weight per day has been previously codified for total tetracycline residues (chlortetracycline, oxytetracycline, and tetracycline). The potential human health impact of the microbial effects associated with the use of oxytetracycline hydrochloride to mark skeletal tissues of finfish as described in this document was assessed. The Agency has determined that use of oxytetracycline hydrochloride as described in this application will not significantly impact the rate and extent of development of antimicrobial drug resistant enteric bacteria formed in the intestinal tract of treated fish following exposure to oxytetracycline hydrochloride.

Under section 512(c)(2)(F)(iii) of the Federal Food, Drug, and Cosmetic Act, this approval for food-producing animals does not qualify for marketing exclusivity.

In accordance with 21 CFR 514.106(b)(2)(vii), this is a Category II change involving the addition of a species and a new claim. The safety and effectiveness data in the parent application did not need to be reevaluated.
6. **ATTACHMENTS:**

Facsimile labeling is attached as indicated below:

- OXYTETRACYCLINE HCL SOLUBLE POWDER-343 135.5 g (4.78 oz)
- OXYTETRACYCLINE HCL SOLUBLE POWDER-343 25 x 135.5 g (4.78 oz)
- OXYTETRACYCLINE HCL SOLUBLE POWDER-343 272.2 g (9.6 oz)
- OXYTETRACYCLINE HCL SOLUBLE POWDER-343 25 x 272.2 g (9.6 oz)